
DRIVES FOR FLUID POWER, DIESEL AND MOBILE EQUIPMENT

POWER TRANSMISSION

The Company And The Products

OEM Dynamics Pty Limited is a wholly Australian owned Company operating for over 25 years. The Company is a major supplier of fluid power related mechanical drives and accessories and industrial drives as well as being the industry leader in supply of oil heat transfer products for fluid power, gear and transmission oil cooling and compressor oil cooling through its DYNACOOL Division. The Company exports products to over 20 countries. OEM Dynamics has Quality Assurance accreditation to the requirements of AS3902/ISO9002. The assessor is Lloyds Register, certificate no. MEQ 0942414

About This Catalogue

Our new catalogue PT4 supersedes the previous publications. The DYNAGEAR power transmission catalogues have become a popular reference in the fluid power, mobile/off road and diesel industry for hydraulic pump and diesel engine interfacing standards as well as a useful sourcing reference for drive components for these industries. The new PT4 publication continues in this tradition, but with a broader sourcing selection for general mobile/off road applications by inclusion of some new products and greater detail on existing products. With the exception of those items requiring assembly to customer specifications, most catalogue products are stock lines and can usually be shipped immediately.

The Products

DYNAGEAR

These products are Australian made and produced at our factory in Ballina NSW. They include a wide range of splined accessories, couplings, diesel drives, agricultural gearboxes, driveline components and overhung load adaptors.

FLEXILOCK

Australian designed and made, gear type polymer element shaft couplings for fluid power applications and direct hydraulic pump drive kits for diesel engines.

CLAMPLOCK

Australian designed and made, spline locking mechanisms which are incorporated in our gear type couplings, splined universal joint yokes and splined driveline companion flanges.

HUB CITY

The Hub City line is of US origin. Some of these products are assembled in Australia under licence they include a range of hydraulic motor driven worm reduction gearboxes, right angle bevel gearboxes and agricultural accessories.

DURST

Another of the Regal-Beloit US based companies which manufacture a range of high quality gear drives. OEM Dynamics assemble to order, from our Australian inventory, the new improved range of Helidraulic/Terrell hydraulic pump drive gearboxes for diesel engines.

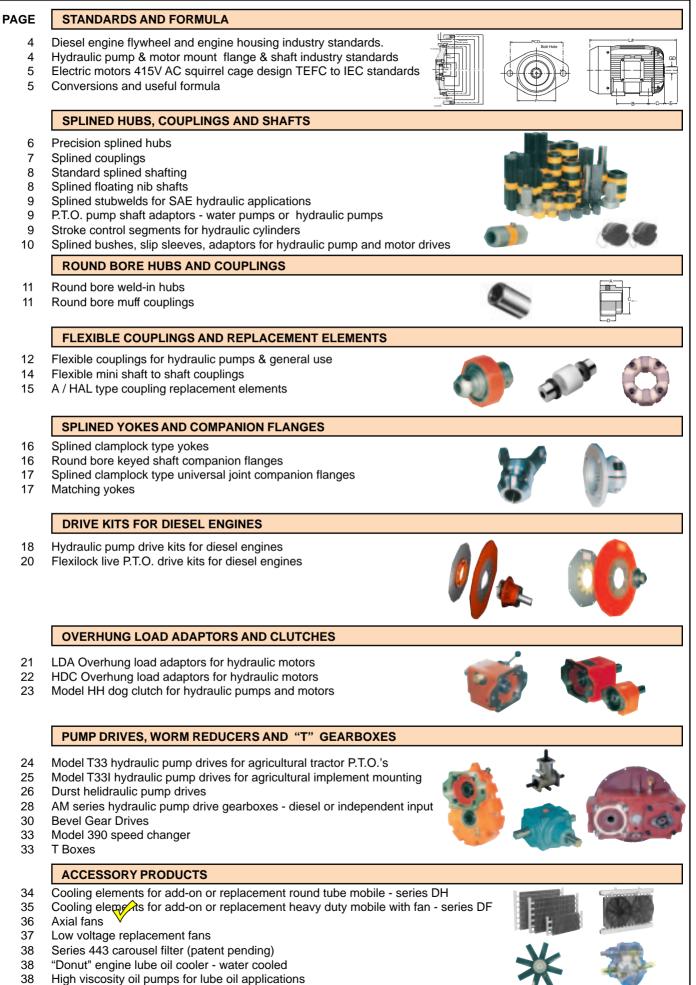
TECHNODRIVE

We represent this well respected transmission manufacturer in Australia and South East Asia. The products include their well known hydraulic pump drive gearboxes, marine transmissions, PTO clutches and diesel engine speed reducers.

DYNACOOL

Dynacool division is the largest supplier of air cooled heat exchangers for fluid power service in Australia. We have provided in this catalogue some selections of our range of air cooled mobile oil coolers. For full details on our heat transfer products please request our catalogues DYNACOOL 2000 DC10 for air cooled oil coolers and accessories, DC118 for shell and tube coolers and DC160 for plate type coolers.

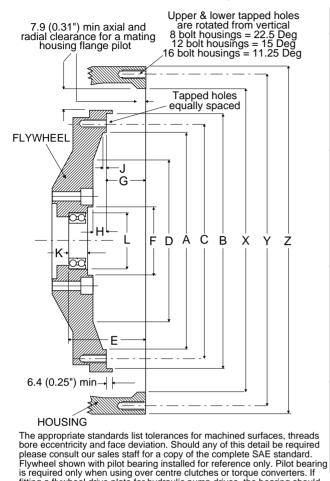
AFTERMARKET SERVICES


This Division provides contract manufacturing facilities for aftermarket parts such as tractor and vehicle drivetrain components, shafts for pumps and complex 4 axis machined, drilled and milled items.

The Service

OEM Dynamics prides itself on the ability to provide excellent customer service and rapid delivery of product. Our application engineers are highly experienced in providing technical advice in selection and the application of products. They have extensive training in mechanical interfacing, including hydraulic pump and motor attachments, spline identification, diesel engine housing and flywheel interfacing and the application of mechanical drives on mobile equipment in off road environments. The company maintains extensive inventory and customers can usually expect same day despatch of most items.

Contents


To ensure best quality and competitiveness product design is continuously reviewed, therefore all information published in this brochure is subject to change without notice and should not be relied upon without confirmation from our office.

DIESEL ENGINE FLYWHEEL AND ENGINE HOUSING INDUSTRY STANDARDS.

EXTRACTS FROM SAE J620D FOR ENGINE FLYWHEELS AND SAE J617C FOR ENGINE FLYWHEEL HOUSINGS Flywheels to J620D are in common use on diesel engines supplied for industrial and marine applications. Engines supplied for the truck market are usually fitted with automotive type flywheels which do not conform to standard J620D. Also some engines from Europe and Japan have variations away from standard such as metric threads in flywheel or housing or non standard machining.

Flywheel

Α

i iywiiooi	A		•	
No.	mm inch	mm inch	mm inch	mm inch
6 1/2	184.2 7.25	215.90 8.500	200.02 7.875	127.0 5.00
7 1/2	206.2 8.12	241.30 9.500	222.25 8.750	
8	225.6 8.88	263.52 10.375	244.48 9.625	
10	276.4 10.88	314.32 12.375	295.28 11.625	196.8 7.75
11 1/2	314.5 12.38	352.42 13.875	333.38 13.125	203.2 8.00
14	409.4 16.12	466.72 18.375	438.15 17.250	222.2 8.75
16	460.2 18.12	517.52 20.375	488.95 19.250	254.0 10.00
Flywheel	E	F	G	Н
No.	mm inch	mm inch	mm inch	mm inch
6 1/2	71.4 2.81	63.5 2.50	30.2 1.19	12.7 0.50
7 1/2	71.4 2.81	63.5 2.50	30.2 1.19	12.7 0.50
8	100.1 3.94	76.2 3.00	62.0 2.44	12.7 0.50
10	100.1 3.94	76.2 3.00	53.8 2.12	15.7 0.62
11 1/2	100.1 3.94		39.6 1.56	28.4 1.12
14	100.1 3.94	101.6 4.00	25.4 1.00	28.4 1.12
16	100.1 3.94	104.6 4.12	15.7 0.62	28.4 1.12
Flywheel	J	K	L	Tapped holes
No.	mm inch	mm inch	mm inch	No Size
6 1/2	9.7 0.38	17.5 0.69	52.0 2.047	6 5/16"-18
7 1/2	12.7 0.50	17.5 0.69	52.0 2.047	8 5/16"-18
8	12.7 0.50	19.0 0.75	62.0 2.441	6 3/8"-16
10	12.7 0.50	28.4 1.12	72.0 2.834	8 3/8"-16
11 1/2	22.4 0.88	31.8 1.25	72.0 2.834	8 3/8"-16
14	22.4 0.88	38.1 1.50	80.0 3.149	8 1/2"-13
16	22.4 0.88	44.4 1.75	100.0 3.937	8 1/2"-13
Housing	Х	Y	Z	Tapped holes
SAE-No.	mm inch	mm inch	mm inch	No Size
6	266.70 10.500	285.75 11.250	307.8 12.12	8 3/8"-16
5	314.32 12.375	333.38 13.125	355.6 14.00	8 3/8"-16
4	361.95 14.250	381.00 15.000	403.4 15.88	12 3/8"-16
3	409.58 16.125	428.62 16.875	450.8 17.75	12 3/8"-16
2	447.68 17.625	466.72 18.375	489.0 19.25	12 3/8"-16
1	511.18 20.125	530.22 20.875	552.4 21.75	12 7/16"-14
1/2	584.20 23.000	619.12 24.375	647.7 25.50	12 1/2"-13
	1			

в

С

D

NO RESPONSIBILITY IS ACCEPTED FOR OMISSIONS VARIATIONS OR ERRORS

HYDRAULIC PUMP & MOTOR MOUNT FLANGE & SHAFT INDUSTRY STANDARDS

EXTRACTS FROM SAE J744C ANSI STANDARD FOR FLUID POWER PUMPS AND MOTORS The SAE standard J744C was originally developed for off road vehicle use in USA. Not all pumps and motors are built to this standard.

STRAIGHT SHAFT TYPES

be removed

fitting a flywheel drive plate for hydraulic pump drives, the bearing should

S	Torque in-lbs		SL#	TL#	Key (Width (
	517 1,129 1,852 2,987	8.25 17.9 29.3 47.5 90 171	0.750" 0.937" 0.937" 1.312" 1.500" 1.875" 2.125" 2.625"	1.250" 1.250" 1.625" 1.812" 2.187" 2.437"	0.156" 0.187" 0.250" 0.250" 0.312" 0.375"	78 12 13 14 15 24 60 61	

#Lengths shown are for the common short shaft types for long shaft series see Standard SAE J744C. HP at 1000 RPM. Torque and HP requirements noted are typical (based on shaft St of 25000 PSI) and should be considered as a guide only.

30 Deg INVOLUTE SPLINE TYPES Torque HP at ND Spline SAE OEM ті

(based on shaft St of 25000 PSI) and should be considered as a

* OEM Code. Unique code for ID of shaft or bore sizes. Appears as last two numbers in all Part Numbers for Splined Hubs, Splined Couplings, Splined Shafts, Flexilock Hubs, Clamplock Components, Over Hung Load Adaptors or Gearboxes shown in this catalogue.

SAE

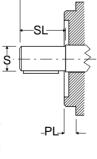
Code

В

CDEF

PCD

5.000"


13.781"

6.375" 0.562" 9.000" 0.812" 12.500" 0.812"

I VV	O BOLLI	NOUNTI	NG FL/	ANGE
SAE Code		Bolt Hole	Ρ	PL
AA A B C D E F	3.250" 4.187" 5.750" 7.125" 9.000" 12.500" 13.781"		2.00" 3.25" 4.00" 5.00" 6.00" 6.50" 7.00"	0.250" 0.250" 0.375" 0.500" 0.500" 0.625" 0.625"

NO RESPONSIBILITY IS ACCEPTED FOR OMISSIONS VARIATIONS OR ERRORS

PCD

P

Bolt Hole

	D	etails	in-lbs	1000	ND	ΙL	Code	Code*		e
	9T 2	0/40 DP	260	4.25	1/2"	1.062"	AA	91		
		6/32 DP		8.25		1.250"	Â	01		
	11T 1	16/32 DP	1,129	17.9	3/4"	1.250"	AH	02		
	13T 1	16/32 DP	1,852	29.3	7/8"	1.625"	В	03	ND -	
	15T 1	16/32 DP	2,987	47.5		1.812"	BB	04	* '	
	14T 1	12/24 DP	5,677	90	1 1/4"	2.187"	С	06		
	21T 1	16/32 DP	6,839	108	1 3/8"	2.187"	CS	07		
	17T 1	12/24 DP	10,777	171	1 1/2"	2.437"	CC	32		Ę.
	13T	8/16 DP	15,057	239	1 3/4"	2.937"	D	08		
		8/16 DP				2.937"	E	08		PI_
	15T	8/16 DP	24,245	285	2"	3.437"	F	37		· L
ł	IP at 1	000 RPM.	Torque	and HI	P require	ements n	oted ar	e typica	ıl	

FOUR BOLT MOUNTING FLANGE

Bolt

Hole

0.562"

1.062

Р

4.00"

5.00"

6.00'

6.50"

7.00'

РСÓ

Bolt Hole

PL

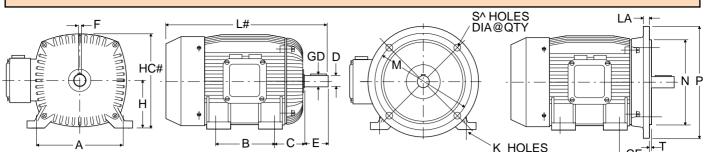
0.375"

0.500"

0.500'

0 625

0.625


guide only. Torsional stress is calculated at spline undercut.

4

(X

6

ELECTRIC MOTORS 415V AC SQUIRREL CAGE DESIGN TEFC TO IEC STANDARDS

Dimensions so marked are subject to variation depending on the brand of motor being used and may not be shown. S^ Frames 63 through 200L have 4 holes on 45 deg. The remainder 8 holes on 22 deg 30 min. Relationship of power output verses frame may vary with manufacturer.

							DIM	IENSI	ONS (mm)								POWE	R RANGE kW	@ MOTOR F	RPM
FRAME	Α	В	С	CF	D	Е	F	GD	Н	HC#	Κ	LA	Μ	Ν	Р	S^	Т	3000	1500	1000	750
63	100	80	40	40	11	23	4	12.5	63	124	7	6	115	95	140	10	3	0.12-0.25	0.12-0.18		
71	112	90	45	45	14	30	5	16	71	140	7	9	130	110	160	10	3.5	0.37-0.55	0.25-0.37	0.18	0.12
80	125	100	50	50	19	40	6	21.5	80	158	10	10	165	130	200	12	3.5	0.75-1.10	0.55-0.75	0.37-0.55	0.18
90S	140	100	56	56	24	50	8	27	90	178	10	10	165	130	200	12	3.5	1.50	1.10	0.75	0.37
90L	140	125	56	56	24	50	8	27	90	178	10	10	165	130	200	12	3.5	2.20	1.50	1.10	0.55
100L	160	140	63	63	28	60	8	31	100	198	12	11	215	180	250	15	4	3.0	2.2-3.0	1.5	0.75-1.1
112M	190	140	70	70	28	60	8	31	112	222	12	11	215	180	250	15	4	4.0	4.0	2.2	1.5
132S	216	140	89	89	38	80	10	41	132	260	12	12	265	230	300	15	4	5.5-7.5	5.5	3.0	2.2
132M	216	178	89	89	38	80	10	41	132	260	12	12	265	230	300	15	4	9.2	7.5	4.0-5.0	3.0
160M	254	210	108	108	42	110	12	45	160	314	15	18	300	250	350	19	5	11.0-16.0	9.2-11.0	7.5	4.0-5.5
160L	254	254	108	108	42	110	12	45	160	314	15	18	300	250	350	19	5	18.5	15.0	9.2-11.0	7.5
180M	279	241	121	121	48	110	14	51.5	180	354	15	18	300	250	350	19	5	22.0	18.5		9.2
180L	318	279	121	121	48	110	14	51.5	180	354	15	18	300	250	350	19	5	22.0	22.0	15.0	11.0
200M	318	267	133	133	55	110	16	59	200	392	19	18	350	300	400	19	5		22.0	15.0	11.0
200L	356	305	133	133	55	110	16	59	200	392	19	18	350	300	400	19	5	30.0-37.0	30.0	18.5-22.0	15.0
225S	356	286	149	149	55/60	110	16/18	#	225	455	19	18	400	350	450	19	5	45	37.0-45.0	30	18.5-22.0
225M	356	311	149	149	55/60	110	16/18	#	225	455	19	18	400	350	450	19	5	45	37.0-45.0	30	18.5-22.0
250S	406	311	168	168	60/70	140	18/20	#	250	480	24	18	500	450	550	19	5	55.0-75.0	55.0-75.0	37.0-45.0	30.0-37.0
250M	406	349	168	168	60/70	140	18/20	#	250	480	24	18	500	450	550	19	5	55.0-75.0	55.0-75.0	37.0-45.0	30.0-37.0

NO RESPONSIBILITY IS ACCEPTED FOR OMISSIONS VARIATIONS OR ERRORS

CONVERSIONS AND USEFUL FORMULA

CONVERSIONS TORQUE

Nm x 0.7376 = lbf ft lbf ft x 1.356 = Nmlb in x 0.1130 = Nmkgm x 9.807 = Nmkgm x 7.232 = lbf ft

POWER

kW x 1.341 = HP HP x 0.7457 = kW Met HP x 0.7355 = kW Ton of Rfg x 3.517 = kW

PRESSURE

 $\begin{array}{l} \mathsf{PSI} \ x \ 0.0689 = \mathsf{Bar} \\ \mathsf{Bar} \ x \ 14.5 = \mathsf{PSI} \\ \mathsf{inH}_2\mathsf{O} \ \ x \ 0.249 = \mathsf{kPa} \end{array}$

VOLUME

Gal (UK) x 4.546 = Litres Gal (US) x 3.785 = Litres Cu Ft x 28.32 = Litres

LENGTH Inch x 25.4 = mm Feet x 0.3048 = metre

AREA

Sq Inch x 6.452 = Sq cm Sq Ft x 0.0929 = Sq mtr

VELOCITY

Ft/s x 0.3048 = m/s mph x 1.609344 = km/h Knot UK x 1.853 = km/h

MASS

Oz x 28.3495 = gram lb x 0.4536 = kg Ton UK x 1.016 = Tonne

POWER TORQUE AND SPEED RELATIONSHIPS ISO UNITS

POWER TORQUE AND SPEED RELATIONSHIPS US UNITS

T = <u>HP x 5252</u> RPM	HP = <u>T x RPM</u> 5252	RPM = <u>HP x 5252</u> T	T = <u>kW x 9549</u> RPM	kW = <u>T x RPM</u> 9549	RPM = <u>kW x 9549</u> T		
Whe	re T = Torque Ft Lk HP = Horsepowe PM = Revs Per Mi	r	Whe	re T = Torque Newt kW = Kilowatts PM = Revs Per Mi			
HYDRAULIC (I	FLUID POWER) PO	OWER US UNITS	HYDRAULIC (FLUID POWER) POWER ISO UNITS				
HP = <u>PSI x US GP</u> 1714 Above is theor		er Sq Inch Pressure Gallons Per Minute US nefficiency.	$kW = \frac{Bar \times L/min}{600}$ Above is theorem	Bar = Press L/min = Litre retical power. Add i	s Per Minute		

NO RESPONSIBILITY IS ACCEPTED FOR OMISSIONS VARIATIONS OR ERRORS

HYDRAULIC PUMP DRIVE KITS FOR DIESEL ENGINES

FLEXILOCK has torsional vibration control and spline locking security.

LARGEST RANGE AVAILABLE IN THE WORLD TODAY.

With over 300 combinations we offer by far the largest standard range of direct hydraulic pump drive kits for diesel engines in the world today. The application versatility of our system is unique, covering SAE & DIN configurations.

A COMPLETE ENGINEERED PRODUCT.

Using a **FLEXILOCK** kit permits the customer to make a reliable pre-engineered connection between the engine and hydraulic pump without the necessity of designing a special adaptation.

WIDE POWER RANGE, UP TO 300 HP.

63 Series with capacity to 47 HP (35 kW) at 2500 RPM. 101 Series with capacity to 142 HP (106 kW) at 2500 RPM. 127 Series with capacity to 209 HP (156 kW) at 2200 RPM & 195 Series with capacity to 300 HP (223 kW) at 2200 RPM.

WIDE RANGE OF ENGINE HOUSING ADAPTORS.

We have been manufacturing engine housing adaptors since 1977 and can provide a wide range of high quality adaptors from stock. Housing adaptors have UNC tapped holes for pump mounting.

LONG TROUBLE FREE LIFE.

Our special polymer flywheel driveplate elements are formulated for optimum elasticity at engine operating temperature and will continue to absorb engine torsional vibration over a very long life cycle. Unlike rubber drive connections, our elements do not harden and fret with continued engine heat exposure, but remain effective over long periods.

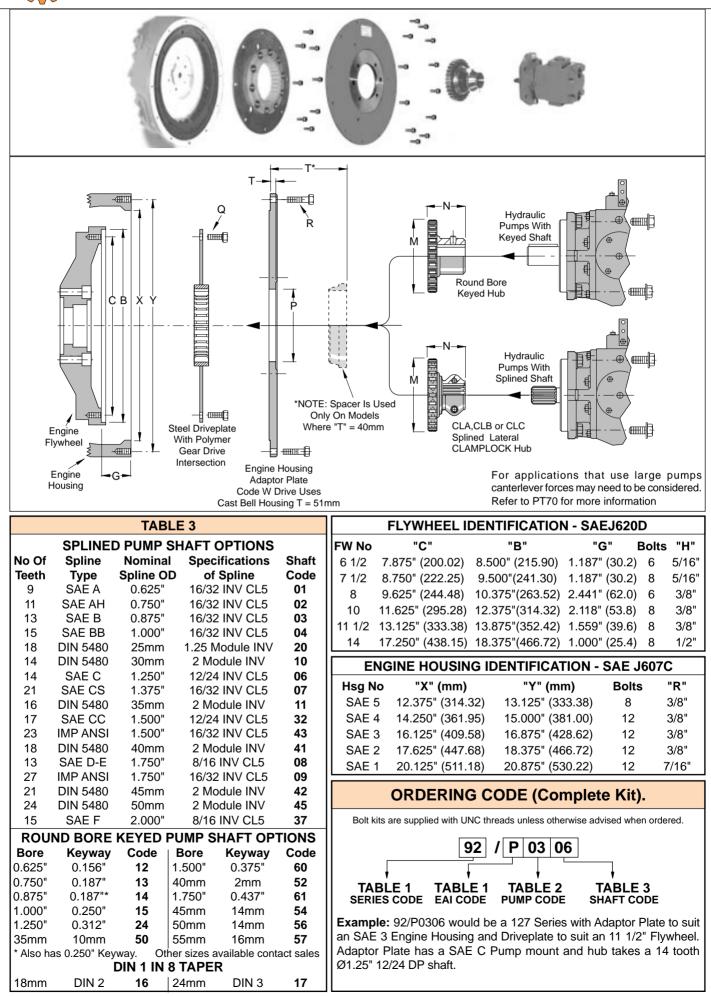
STEEL DRIVEPLATE.

Outer driveplate is steel with special polymer element riveted in place. The use of a steel drive plate eliminates dimensional instability often experienced with the full plastic style drives.

SUPERIOR SPLINE LOCKING SECURITY.

The CL and SL type **CLAMPLOCK** spline locking mechanisms in our all steel coupling hubs provide the highest level of spline locking security currently available from any source. Pump spline shaft wear or fretting is eliminated by simply tightening the screws provided. Material is high carbon steel not sintered metal as used by some competitors.

	TABLE 1									
ENGINE AD	ENGINE ADAPTOR INTERFACING AND PUMP COMPATIBILITY CHART									
Series By Perfo	ormance.	Engine Interfacing	EAI Codes	Pump Size	Stand Off Distance "T"	Size SAE A 2	RFACING "P" C 3.25"	ode 01		
63 Series Co Torque - 135 Nm Torque - 100 ft.lbs. M=2.5" (63mm) N=1.46" (37mm)	ode 90 34hp (25kW) @1800 RPM 38hp (28kW) @2000RPM 41hp (30kW) @2200RPM 47hp (35kW) @2500RPM	SAE 5 x 6 1/2" SAE 5 x 7 1/2" SAE 5 x 8" SAE 4 x 6 1/2" SAE 4 x 7 1/2" SAE 4 x 8"	C E G	A,B A,B A,B A,B A,B A,B A,B	0.24"(6mm) 0.24"(6mm) 0.24"(6mm) 0.31"(8mm) 0.31"(8mm) 0.31"(8mm)	SAE A 2 SAE B 2/4 SAE C 2/4 SAE D 4 SAE E 4 SAE F 4 DIN Gp2	4.00" 5.00" 6.00" 6.50" 7.00" 36.5mm	02 03 04 05 06 07		
101 Series C Torque - 406 Nm Torque - 300 ft.lbs. M=4"(101.5) N=2.54" (64.5mm)	Code 91 102hp (76kW) @1800RPM 114hp (85kW) @2000RPM 125hp (93kW) @2200RPM 142hp (106kW) @2500RPM	SAE 5 x 6 1/2" SAE 5 x 7 1/2" SAE 5 x 8" SAE 5 x 8" SAE 4 x 7 1/2" SAE 4 x 8" SAE 4 x 10" SAE 3 x 10" SAE 3 x 11 1/2 SAE 2 x 11 1/2		B,C B,C B,C B,C B,C B,C B,C C,D	1.57"(40mm*) 1.57"(40mm*) 0.24"(6mm) 0.24"(6mm) 1.57"(40mm*) 0.31"(8mm) 0.31"(8mm) 0.31"(8mm) 0.31"(8mm) 0.43"(12mm)	DIN Gp3 M100 4 M125 2/4 M140 4 M160 2/4 M180 4 M200 4	50.8mm 100mm 125mm 140mm 160mm 180mm 200mm	08 09 10 11 12 13 14		
127 Series C Torque - 678 Nm Torque - 500 ft.lbs. M=5" (126.7mm) N=2.54" (64.5mm)	Code 92 152hp (113kW) @1600RPM 170hp (127kW) @1800RPM 190hp (142kW) @2000RPM 209hp (156kW) @2200RPM	SAE 4 x 10" SAE 3 x 10" SAE 3 x 11 1/2' SAE 2 x 11 1/2' SAE 1 x 11 1/2' SAE 1 x 14"	' S	B,C B,C C,D C,D,E D,E,F	0.31"(8mm) 0.31"(8mm) 0.31"(8mm) 0.43"(12mm) 0.43"(12mm) 2"(51mm)	P(HP) = <u>T(</u> P(kW) = <u>T</u>	5252			
195 Series C Torque - 969 Nm Torque - 715 ft.lbs. M=7.66" (194.5mm) N=2.54" (64.5mm)	217hp (162kW) @1600RPM 245hp (183kW) @1800RPM	SAE 3 x 11 1/2' SAE 2 x 11 1/2' SAE 1 x 11 1/2' SAE 1 x 14"	' S	C,D C,D C,D,E D,E,F	0.31"(8mm) 0.43"(12mm) 0.43"(12mm) 2"(51mm)		m x 0.737 f ft x 1.35			


* Spacer used on this model - see drawing next page

EAI Code 'R' used on Hatz Diesel engines where the "G" dimension is 23mm. Refer to PT112 for full details. For Diesel engine flywheel and engine housing industry standards refer to page 4.

HYDRAULIC PUMP DRIVE KITS FOR DIESEL ENGINES

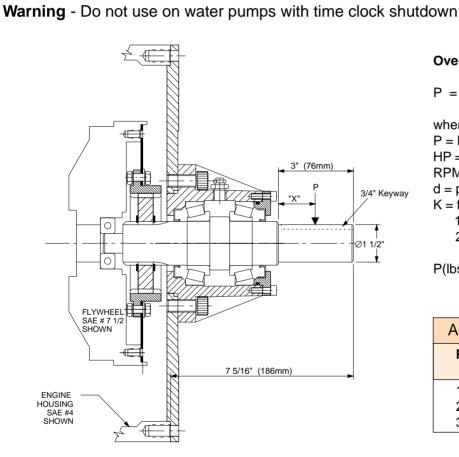
GP148

FLEXILOCK LIVE P.T.O. DRIVE KITS FOR DIESEL ENGINES

GP151

APPLICATIONS

Pulley drives, Chain drives, other applications where a male output shaft from a diesel engine is required.


FEATURES

Taper roller bearings for high capacity and long life, spheroidal graphite cast iron housing. Flexilock drive for installation ease, reduces torsional vibration transmission and misalignment capacity. Protects engine bearings and crank from side load failures. Comes factory filled with ATF oil

Kit includes : - Flexilock flywheel driveplate, Flexilock engine housing adaptor plate, bearing supported stub shaft.

LPTO Ordering Information - Common Types

Overhung load calculation

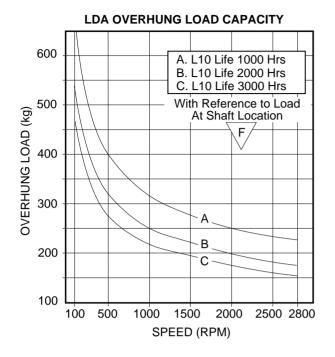
$$P = \frac{12600 \text{ x HP}}{\text{RPM x d}} \text{ x K}$$

where

P = load in pounds due to belt pull HP = diesel engine power RPM = speed

d = pulley pitch diameter inches

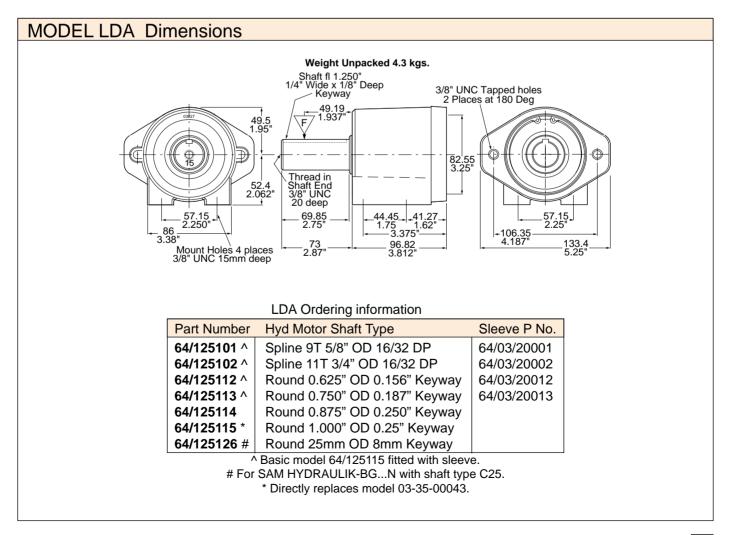
- K = factor
 - 1.5 for V-belts
 - 2.5 for flat belts


 $P(lbs) \ge 0.4536 = P(kg)$

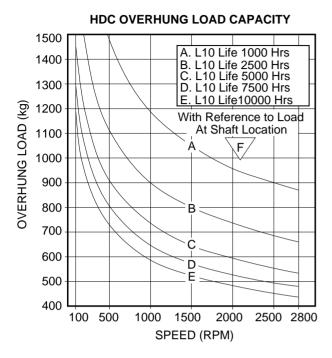
Allowable side pull loads P							
RPM Distance "X" 25mm 50mm							
1000	379 kg	283 kg					
2000 3000	302 kg 265 kg	270 kg 238 kg					

Flexilock Series	Engine Housing	Engine Flywheel	Power. Rating	Speed RPM	LPTO Part Number	Pilot Bearing Customer Supply
101	SAE 3	11 1/2	100 HP	2600	91/P03L603	6306-2RS
101	SAE 4	10	70 HP	2800	91/K03L603	6306-2RS
101	SAE 4	8	70 HP	2800	91/J03L603	6305-2RS
101	SAE 4	7 1/2	70 HP	2800	91/H03L603	6304-2RS
101	SAE 5	7 1/2	70 HP	3000	91/E03L603	6304-2RS
101	SAE 5	6 1/2	70 HP	3000	91/D03L603	6304-2RS
		re standard comb our sales office.	pinations. Othe	r combinations	available.	

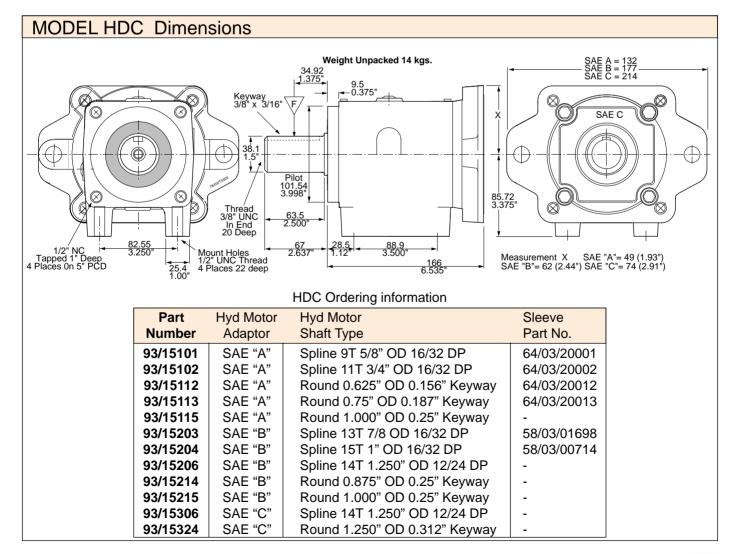
OVERHUNG LOAD ADAPTORS FOR HYDRAULIC MOTORS



MODEL LDA


This is a low cost model with a fixed SAE "A" motor adaptor and 6 shaft size options. Bearings are sealed Ball Bearing type greased for life. Shaft options include most of those required for high speed hydraulic motors. Also included is the 1" shaft option for Charlyn, Ross TRW and Danfoss 0rbit motors and 25 mm shaft to suit the SAM HYDRAULIK BG...N orbit motor.

OVERHUNG LOAD ADAPTORS FOR HYDRAULIC MOTORS


GP3

MODEL HDC

This model has removable SAE hydraulic motor adaptors and may be supplied with SAE "A", SAE "B" or SAE "C" motor interfacing and 10 shaft size options accommodating almost any SAE Hyd motor up to SAE "C". Bearings are Taper Roller type and units are usually supplied factory oil filled. Grease filling required for vertical mount. The HDC model may also be face mounted via a set of front mount holes and pilot.

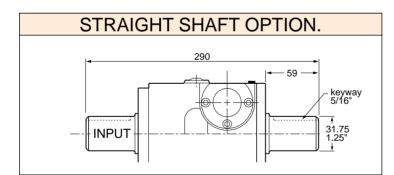
MODEL HH DOG CLUTCH FOR HYDRAULIC PUMPS AND MOTORS

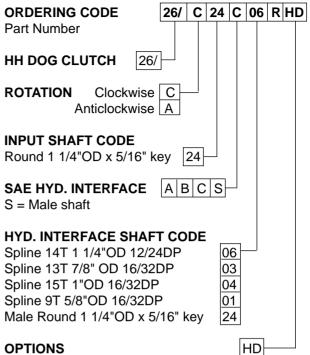
APPLICATIONS.

Direct front crankshaft drive of hydraulic pumps from engine on cranes, transit mixers, special vehicles, fishing boats etc where pump requires disengaging when not in use. Use anticlockwise version for above applications.

Drives for hydraulic pumps from rear of engine or from flywheel PTO when engine has separate power delivery requirement where hydraulic pump needs disengaging when not in use. Use clockwise version for direct drive off rear of engine.

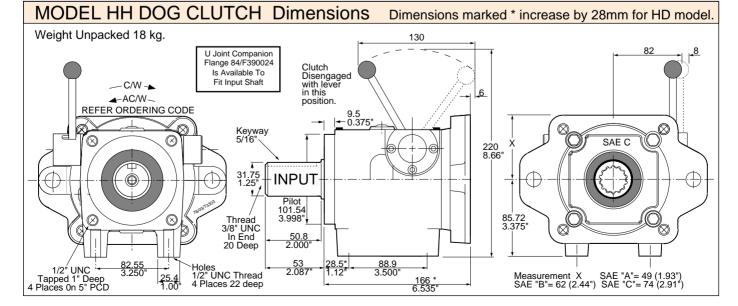
FEATURES.


The unit may be supplied to suit SAE 'A', SAE 'B' or SAE 'C' hydraulic pumps or motors or as a shaft to shaft version.


The standard manual version shown, features automatic spring loaded engagement on start-up and positive gate control in either the engaged or disengaged positions. The unit may be easily adapted for electric solenoid or cable control. The clutch casing is cast iron, bearings are deep groove ball type. The drive dogs are specially shaped to provide fast engagement and resistance to jump out even with reversing loads. The dogs are made from hardened high strength alloy steel. The unique actuating mechanism is designed for long trouble free life.

CAPACITY.

Maximum continuous input capacity is 0.04 kW (0.053 HP) per rev with a continuous torque rating of 382 Nm (282 lbf ft) Max brief peak torque is 560 Nm (413 lbs ft). Side loading is limited, contact our sales office. The unit is shipped dry, and must be filled before use. Fill to oil level plug depth with ATF automatic transmission fluid (approx.300ml). Ensure gasket or sealant is used between hyd. pump/ motor and clutch as spline is open to lubricant.

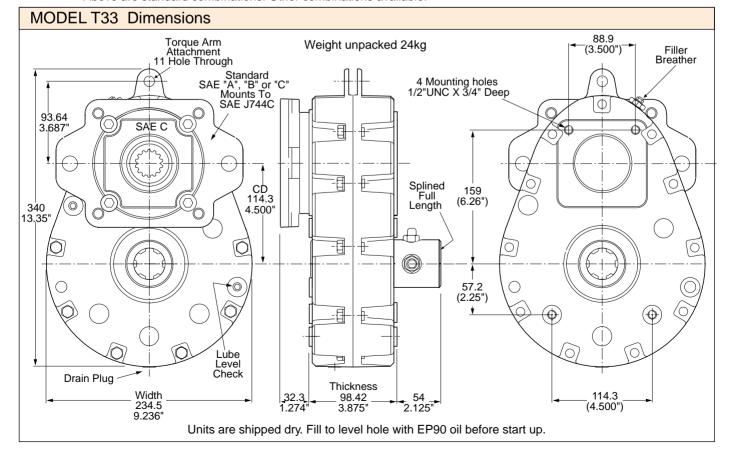

Warning. Clutch may not be engaged while engine is running.

Heavy Duty - Extra bearing for overhung loads and internal needle/thrust bearing for longer life. Dimensions marked * increase by 28mm for HD model.

HYDRAULIC PUMP DRIVES FOR AGRICULTURAL TRACTOR P.T.O.

CAST IRON CASES Unlike our competitors, we utilise cast iron gear case construction. Cast iron expansion at the high temperatures encountered with this application is near equal to the expansion of the bearings and the outer bearing rings are retained in the case. Aluminium cases with high heat expansion often fail due to the outer bearing ring spinning and displacing particles of aluminium which destroy the bearings.

MODEL T33


MODEL T33 APPLICATION These models embody over 20 years of engineering experience with PTO pump drives. They were developed for use as directly driven hydraulic pump speed increasers for 540 or 1000 RPM tractor PTO shafts. Models for 540 RPM PTO's are provided with a 1 3/8" 6T spline hollow shaft and for 1000 RPM PTO's, a 1 3/8" 21T spline hollow shaft. Shafts are splined internally for full length for through drive. Normal practice is to utilise a torque arm to restrain the drive from rotation.

Maximum power is 50 horsepower with the 1:3.31 ratio models at 540 RPM input and 65 Horsepower in the 2.04 ratio models at 1000 RPM input. The T33 is available to accept most SAE "A", SAE "B" or SAE "C" hydraulic pumps. Pump adaptors on the T33 may be changed in the field.

Hyd Pump Adaptor	Gear Ratio	T33 Orderi Hyd Pump Shaft Type	ng Informatic Tractor PTO Shaft	ON Sleeve Part No.	T33 Part Number
SAE "A"	1:3.31	9 Spline 5/8"	1 3/8" 6 Spline	58/03/10001	332/06101
SAE "A"	1:3.31	11 Spline 3/4"	1 3/8" 6 Spline	58/03/10002L	332/06102
SAE "B"	1:3.31	13 Spline 7/8"	1 3/8" 6 Spline	58/03/01698	332/06203
# SAE "B"	1:3.31	15 Spline 1"	1 3/8" 6 Spline	58/03/00714	332/06204
SAE "B"	1:3.31	14 Spline 1 1/4"	1 3/8" 6 Spline	-	332/06206
SAE "B"	1:2.04	13 Spline 7/8"	1 3/8" 21 Spline	58/03/01698	331/21203
# SAE "B"	1:2.04	15 Spline 1"	1 3/8" 21 Spline	58/03/00714*	331/21204
SAE "C"	1:3.31	13 Spline 7/8"	1 3/8" 6 Spline	58/03/01698	332/06303
# SAE "C"	1:3.31	15 Spline 1"	1 3/8" 6 Spline	58/03/00714	332/06304
SAE "C"	1:3.31	14 Spline 1 1/4"	1 3/8" 6 Spline	-	332/06306
SAE "C"	1:2.04	14 Spline 1 1/4"	1 3/8" 21 Spline	-	331/21306
SAE "C"	1:2.04	21 Spline 1 3/8"	1 3/8" 21 Spline	-	331/21307

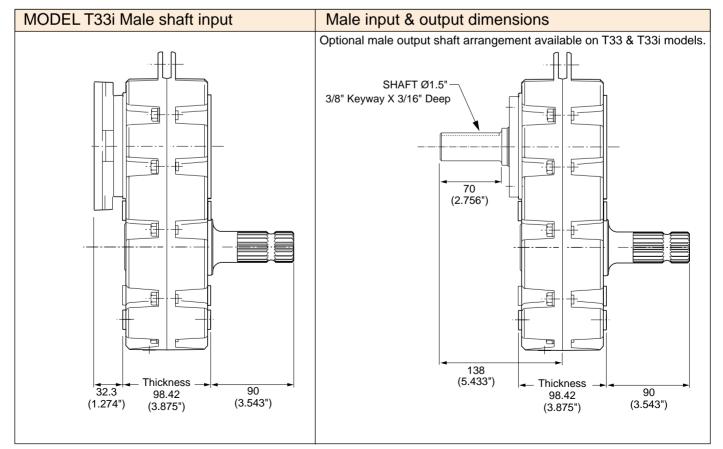
* Older Models only # Made to special order. Above are standard combinations. Other combinations available.

HYDRAULIC PUMP DRIVES FOR AGRICULTURAL IMPLEMENT MOUNTING

GP208

PARTS AVAILABILITY The drives have been designed in Australia and are mfg at our facility in Ballina N.S.W. Customer can obtain parts and service without delay. Technical assistance is available from the people who designed the product.

MODEL T33I


MODEL T33I APPLICATION This model was developed for use as an implement mounted hydraulic pump speed increaser for 1000 or 540 rpm tractor PTOs where thrust loads from PTO shafts are encountered. Tapped mounting holes are provided or a factory fitted base mounting bracket can be supplied.

Maximum power is 50 horsepower with the 1:3.31 ratio models at 540 rpm input and 65 Horsepower with the 1:2.04 ratio models at 1000 rpm input. The T33I male shaft input model is available to accept most SAE "A", SAE "B" or SAE "C" hydraulic pumps. Pump adaptors on the T33I may be changed in the field. The T33I male shaft input & output model is supplied with a Ø1 1/2" x 3/8" keyed output shaft.

Hyd Pump Adaptor	Gear Ratio	T33 Orderi Hyd Pump Shaft Type	ng Informatio T33I Shaft	DN Sleeve Part No.	T33I Part Number
SAE "A"	1:3.31	9 Spline 5/8"	1 3/8" 6 Spline	58/03/10001	3321/06101
SAE "A"	1:3.31	11 Spline 3/4"	1 3/8" 6 Spline	58/03/10002L	3321/06102
SAE "B"	1:3.31	13 Spline 7/8"	1 3/8" 6 Spline	58/03/01698	3321/06203
# SAE "B"	1:3.31	15 Spline 1"	1 3/8" 6 Spline	58/03/00714	3321/06204
# SAE "C"	1:3.31	15 Spline 1"	1 3/8" 6 Spline	58/03/00714	3321/06304
SAE "C"	1:3.31	14 Spline 1 1/4"	1 3/8" 6 Spline	-	3321/06306
SAE "B"	1:2.04	13 Spline 7/8"	1 3/8" 21 Spline	58/03/01698	3311/21203
# SAE "B"	1:2.04	15 Spline 1"	1 3/8" 21 Spline	58/03/00714*	3311/21204
SAE "C"	1:2.04	14 Spline 1 1/4"	1 3/8" 21 Spline	-	3311/21306
T33I	Orderi	ng Informatio	n - Male shaf	t input & o	utput
	1:2.04	1 1/2" x 3/8" key	1 3/8" 21 Spline	-	331I/21M60
	1:3.31	1 1/2" x 3/8" key	1 3/8" 6 Spline	-	332I/06M60

* Older Models only # Made to special order. Above are standard combinations. Other combinations available.

DURST

DURST HELIDRAULIC PUMP DRIVES

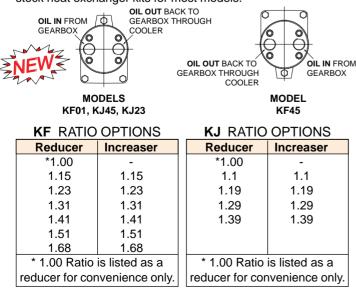
Model KF89

Model KF01

HELIDRAULIC PUMP DRIVES

Durst has developed a family of gear drive products for use with hydraulic pumps and motors. These drives are available for mounting SAE standard hydraulic flanges and pump or motor shaft configurations directly to the gear drive unit. Models are available to mount directly to SAE flywheel housings, with or without clutches or can be driven through independent mounting arrangements.

Helidraulic pump drives include the following major features:


- High tensile iron castings in highly stressed components.
- AISI 8620 forgings or barstock for gears, carburised to Rockwell C-58 minimum.
- AISI 8620 shaft material, carburised to Rockwell C-58 minimum, or AISI C-1144 stress relieved.
- Nitrile or Viton dual lip seals.
- Tapered roller bearings.
- Helical gears, crowned and shaved for quiet operation and high performance.
- A wide variety of standard gear ratios.

THERMAL CAPACITY

The thermal capacity is defined as the power a gear drive will transmit continuously with out overheating. Durst pump drives are used in such a wide variety of operating conditions that only mechanical rating are shown. Under conditions such as restricted air circulation, high speeds and high loads, the thermal capacity may be less than the mechanical rating. Checking the thermal capacity is extremely important during the first few hours of operation. If the heat is being generated faster than it can be dissipated, severe damage may result and provisions for additional cooling should be provided. This may be accomplished by air circulation around the unit or by a recirculating oil system. If additional cooling is not possible a larger capacity unit should be used.

OPTIONAL LUBE PUMP AND OIL COOLER.

Most models can be supplied with a centrally mounted gear pump for passing lube oil to a water or air cooled heat exchanger. We stock heat exchanger kits for most models.

Model KJ45

Model KJ23

The power ratings for Durst gearboxes are based upon the following operating conditions:

• Uniform operating loads.

RATINGS

• Maximum oil sump temperature of 93°C (200°F).

The power ratings listed are at peak power. Units are unable to run continuously at these rating due to thermal limitations.

Model	Power	Power	Max speed	Max torque	Max torque
	HP	kW	RPM	lb.ft	Nm
KF89	355	264	3000	746	1008
KF01	360	268	3000	756	1024
KF45	360	268	3000	756	1024
KJ45	465	346	3000	977	1322
KJ23	462	345	3000	971	1318

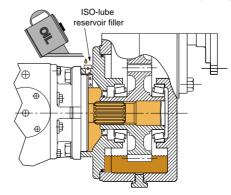
Ratings are based upon component life using a 1:1 ratio @ 2500 rpm for a 2000 hour L-10 life. The full unit rating can be loaded through one pump pad provided the total loading does not exceed unit rating. Durst pump drives are engineered for an optimum balance between mechanical and thermal capacities. Helical gearing and tapered roller bearings provide a quality pump drive with excellent shock absorbing features and low noise characteristics.

Durst drives are designed to accept 100 percent starting overloads or momentary peaks from electric motor driven applications.

SPEED LIMITATIONS

For shaft speeds in excess of 3000 rpm consult factory.

ENGINE HOUSING ADAPTORS

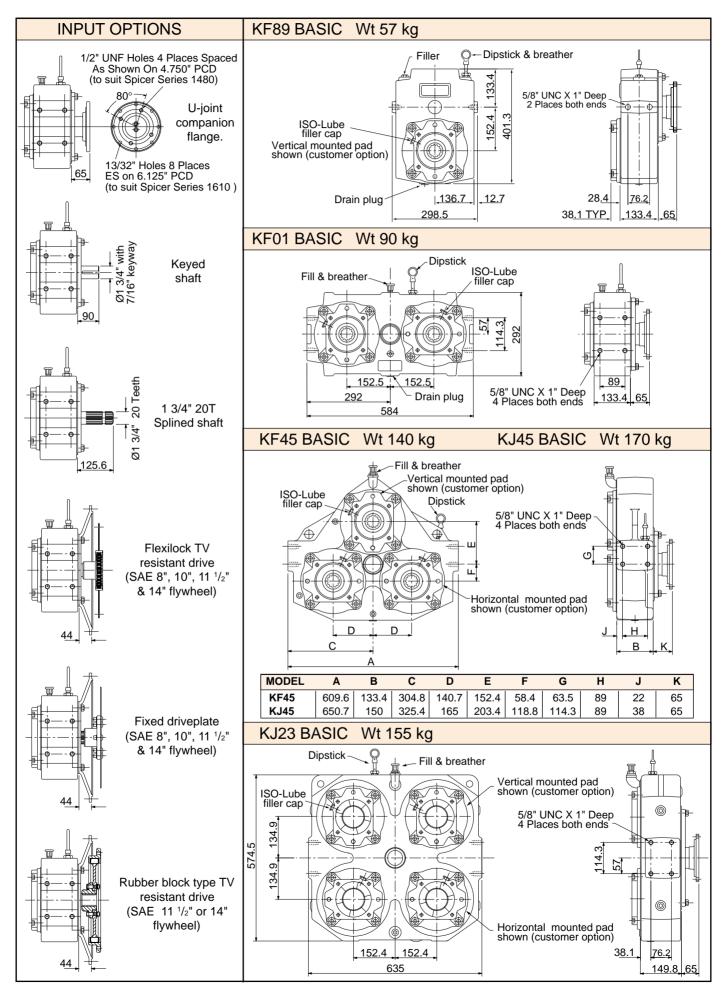

Housing adaptors SAE 1, 2, 3 & 4 are available for all models.

HYDRAULIC PUMP ADAPTORS

Pump rotation is anti-enginewise. Standard available pump adaptors and sleeves include SAE A, B, C, D & E.

ISO-LUBE PUMP ADAPTORS

ISO-lube pump adaptors are supplied as standard. The unique ISO-lube wet spline pad design provides a separate reservoir for the pump shaft splines while sealing gearbox housing from pump leakage. Also, in the event of pump shaft seal failure hydraulic pump oil is relieved externally instead of flooding the gearbox.



For ordering information and part code contact our sales office - Larger models available

DURST

PUMP DRIVE DIMENSIONS AND INPUT OPTIONS

GP87

AM SERIES HYDRAULIC PUMP DRIVE GEARBOXES - DIESEL OR INDEPENDENT INPUT

Model AM330

Model AM450 (with optional lube pump and cooler)

APPLICATION

These gearboxes permit a number of hydraulic pumps to be driven from the one power source, usually, a diesel engine. However, they may be driven from most power sources directly as a shaft to shaft drive through a flexible coupling or via a universal joint drive train. Two, three and four pump models are available. In some instance, pumps can be mounted on both front and back of gearbox. Eg:- Up to 9 pumps have been fitted to the model AM450.

TECHNICAL DETAILS

- · Cases, housings and adaptors are grey iron.
- Gears: Shaved spur on AM 216/320.
- · Ground teeth on larger models
- Standard gear ratio 1:1. Other ratios on application.
- Bearings are deep groove ball with L10 life of 5000 hours.

POWER, TORQUE AND THERMAL RATINGS

The mechanical strength capability of all hydraulic pump drive gearboxes far exceeds their thermal capacity. These gearboxes can transmit high torque loads, however their service life is more often limited by the thermal capacity. For maximum life the lube oil temperature should not exceed 95 °C. Selection of the gearbox must take into account actual operating conditions, this includes considering the input power, speed, type of load and duty experienced. During operation lubricant oil temperature should be closely monitored, it is therefore important to ensure easy access to drain, fill and oil level plugs when designing the installation. It is strongly recommended that all applications are reviewed by our factory sales engineers. All selections must be approved prior to unit shipment to validate warranty.

		Max	Max
	Power*	Speed	Torque Nm
MODEL	Input kW	RPM	per Pump
	TWO PUMP DRIVES		
AM216	0.045 kW Per Rev to 2000 RPM Thereafter Max 90 kW to 3200 RPM	3200	390
AM220	0.083 kW Per Rev to 1800 RPM Thereafter Max 150 kW to 3200 RPM	3200	600
AM230	0.15 kW Per Rev to 1500 RPM Thereafter Max 220 kW to 2600 RPM	2600	715
AM232	0.16 kW Per Rev to 1500 RPM Thereafter Max 240 kW to 2400 RPM	2400	895
	THREE PUMP DRIVES		
AM320	0.062 kW Per Rev to 2000 RPM Thereafter Max 112 kW to 3200 RPM	3200	390
AM330	0.103 kW Per Rev to 1800 RPM Thereafter Max 185 kW to 3200 RPM	3200	600
AM345	0.200 kW Per Rev to 1500 RPM Thereafter Max 300 kW to 2600 RPM	2600	715
	FOUR PUMP DRIVES		
AM450	0.25 kW Per Rev to 1500 RPM Thereafter Max 375 kW to 2400 RPM	2400	1010

SERVICE CATEGORIES AND FACTORS

The service factor for your application must be applied to the power rating for each model. Mobile & off road equipment , stationary industrial appliances and appliances with cooling systems all have different service factors. For an application to be considered intermittent periods of operation at maximum power must be followed by periods of shutdown sufficient to allow lube oil to cool to near ambient temperature. Where systems cycle with full power on and off for short periods only, 6 minutes should be considered as max continuous duty cycle time.

Contact our sale office for a service factor for your application.

GEARBOX LIFE CONSIDERATIONS

On diesel engine applications, the life of the gearbox may be significantly reduced if torsional vibration (TV) is not considered. This is most relevant where the hydraulic pump elements have large rotating masses (moments of inertia). The life of the gearbox and hyd pumps will be increased if TV can be reduced or eliminated. All of our pump drives are available with a range of flywheel mounted couplings for most applications. These include flywheel mounted TV absorbing Flexilock 195 polymer gear type couplings and RBD type couplings. The flywheel mounted fixed driveplate type couplings will not absorb TV and are recommended only for use in mobile light duty service.

HYDRAULIC PUMP ADAPTORS.

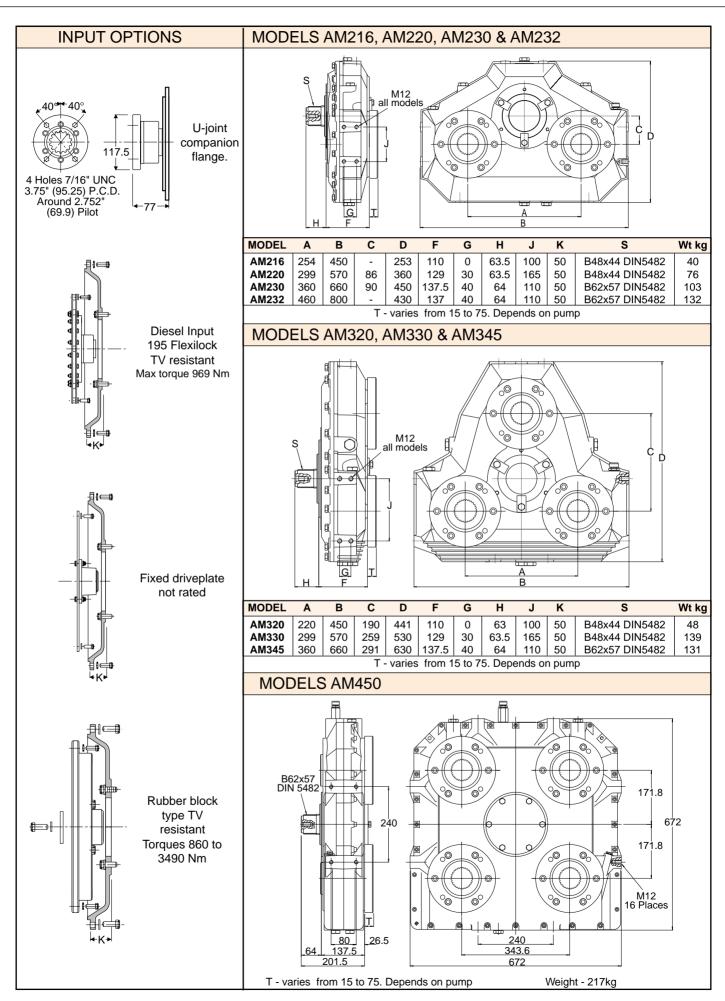
Pump rotation is anti-engine wise. Standard available pump adaptors and shaft sleeves include SAE: A, B, C, D and E. We also stock most metric (DIN) type adaptors and shaft sleeves. The design of Technodrive pump drives also permits to fitting of nonstandard pumps with keyed or splined shafts.

ENGINE INTERFACING. See diesel engine standards J620D for flywheels and J617C for engine housings on page 4 of this catalogue.

LONG LIFE EXPECTANCY. Technodrive are highly experienced and recognise the specific problems associated with this high speed gearbox application. Gear design and manufacture is arranged to provide low noise levels and high efficiency. Special attention has been given to case design to take into account the lubrication requirements for the gears bearings and internal splines.

TECHNICAL SERVICE AND SPARES READILY AVAILABLE.

OEM Dynamics are the largest stockists of Technodrive outside of Europe and maintain a large inventory of service parts for pump drives. OEM Dynamics have been associated with hydraulic pump drive applications for 20 years and we are proud to be able to offer the best advice available in the industry.


OPTIONAL LUBE PUMP AND OIL COOLER.

Most models can be supplied with a centrally mounted gear pump for passing lube oil to a water or air cooled heat exchanger. We stock heat exchanger kits for most models.

28

TECHNODRIVE

AM PUMP DRIVE MAJOR DIMENSIONS AND INPUT OPTIONS

GP115

HEAVY DUTY CAST IRON CASE MODELS WITH TAPER ROLLER BEARINGS

Model 1000 INTRODUCTION.

Model 88

HUB CITY bevel drives have been available in Australia since 1976. The range shown here are the basic models in straight and spiral bevel which we stock in this country. Numerous other variations are available on an indent basis.

APPLICATION.

Bevel Gear Drives transfer power at 90°. Generally this power is transferred at a 1:1 ratio with relation to speed. However these gear drives are capable of increasing or reducing speed depending upon the gear ratio used.

SHAFT ROTATION.

Shaft rotation is determined by the relative location of the gears. Right hand (clockwise) or left hand (counter clockwise) rotations are determined by viewing the end of the shaft. Pinion shaft can be rotated in either direction. Refer figures below right.

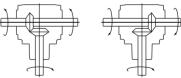
	POPULAR MODELS									
	GEAR		SHAFT	kW per	MAX IN	DRY	ORDERING			
MODEL	TYPE	RATIO	SIZE	100 RPM*	RPM	WT kg	CODE			
M 3	ST	1:1	0.625"	0.093	2400	4.6	02/20/21101			
M 3	ST	1.5:1	0.625"	0.065	3000	4.6	02/20/21106			
44	ST	1:1	0.750"	0.850	1750	6.9	02/20/75460			
44	ST	2:1	0.750	0.254	1750	6.9	02/20/75463			
150	ST	1:1	1.000"	0.778	1150	11	02/20/00802			
150	SP	1:1	1.000"	0.666	3000	11	02/20/00813			
150	ST	1.5:1	1.000"	0.393	1750	11	02/20/00826			
150	ST	2:1	1.000"	0.280	2400	11	02/20/00818			
150	SP	2:1	1.000"	0.381	2400	11	02/20/00849			
165	ST	1:1	1.000"	1.102	1150	12	02/20/00901			
165	SP	1:1	1.000"	0.667	3000	12	02/20/00906			
165	ST	1.5:1	1.000"	0.393	1750	12	02/20/00918			
165	ST	2:1	1.000"	0.280	2400	12	02/20/00911			
66	ST	1:1	1.250"	1.569	1150	22	02/20/03513			
66	SP	1:1	1.250"	1.833	2400	22	02/20/03519			
66	SP	1.53:1	1.250"	1.392	3000	22	02/20/03552			
66	ST	2:1	1.250"	0.311	1750	22	02/20/03525			
66	SP	2:1	1.250"	0.634	3000	22	02/20/03606			
66	SP	3:1	1.250"	0.382	3000	22	02/20/03601			
600	ST	1:1	1.375"	2.205	1150	24	02/20/03401			
600	SP	1:1	1.375"	1.833	2400	24	02/20/03406			
600	SP	1.29:1	1.375"	1.439	2400	24	02/20/03431			
88	ST	1:1	1.375"	3.860	850	40	02/20/04404			
88	SP	1:1	1.375"	3.835	1750	40	02/20/04010			
88	ST	1.5:1	1.375"	2.528	1150	40	02/20/04041			
88	ST	2:1	1.375"	1.427	1150	40	02/20/04015			
88	SP	2:1	1.375"	2.386	1750	40	02/20/04079			
88	ST	3:1	1.375"	0.639	1750	40	02/20/04026			
800	ST	1:1	1.500"	6.074	690	53	02/20/59301			
800	SP	1:1	1.500"	5.625	1750	53	02/20/59346			
800	SP	1.5:1	1.500"	2.940	1750	53	02/20/59341			
1000	ST	1:1	1.750"	8.646	690	62	02/20/04601			
1010	SP	1:1	2.000"	10.695	1750	80	02/20/06301			
1010	SP	1.5:1	2.000"	7.372	1750	80	02/20/06306			
1010	SP	2:1	2.000"	5.280	1750	80	02/20/06311			

Model 66 BASIC SELECTION.

Model 150

Bevel gear drives are selected on the basis of speed, ratio, power and torque. FOR quick selection refer to the "POPULAR MODELS" box below. Select the ratio, power in kW and input speed required. Power is shown as kW per 100 RPM. To convert to this scale divide the power (kW) required by the input speed to be used and them multiply answer by 100. Then pick a model which meets or exceeds the power per 100 RPM you have calculated while having suitable ratio and RPM range to meet your requirements.

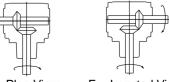
STRAIGHT OR SPIRAL BEVEL.


Both Straight and Spiral bevel drives are available. Straight bevel drives are suitable for lower input speeds while spiral bevel drives are suitable for higher input speeds due to their quietness and smoother gear meshing action. They are also generally able to handle higher power but are more expensive than straight bevels.

SERVICE FACTORS.

The ratings for bevel drives are based on a service factor of 1.00, assuming uniform loads and uniform power source for up to 10 hours operation per day. For other operating conditions, the power or torque must be multiplied by the appropriate service factor, to determine the equivalent rating. AGMA Service factor tables are available upon request.

DRIVE STYLES.


Bevel drives have pinion shafts and cross shafts. Normally the input is at the pinion shaft. The type of cross shaft determines the style as can be seen below.

A = Plan View. B = Inverted View So this unit is known as Style A B

C = Plan View. F = Inverted View So this unit is known as Style C F

D = Plan View. E = Inverted View So this unit is known as Style D E

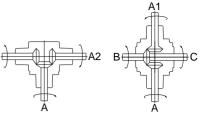
30

BEVEL GEAR DRIVES

SINCE 1893

GP19

Ordering


Use the ordering codes as shown on the previous page and add the required style code AB or CF or DE to the end of the ordering code. Eg:- 02/20/00802AB For configurations or models not shown, factory numbers will be provided at time of order.

Other Styles

To the right are shown two types of directional differential styles which are available in most models to special order.

Hollow Cross Shafts.

Some models are available with hollow cross shafts to special order. Consult us for details.

Style G

Style GG

Beve	el Ge	ar Dr	rive [Dime	nsio	ns										
					J K			F	S –	•M•					——M—	
B			Q			N ↓			A e s E a	Drawing Appearan each moc shown are Detailed T are availab	lel. Dir for refer Technic le for a	mensio rence or al shee Il mode	for ns nly. ets Is.			
MODEL		B	Q ~ C	-F	<u> </u>		G	J	K	Appearan each moc shown are i Detailed T are availab	ce will lel. Dir for refer echnic le for a	vary f mensio rence or al shee Il mode	for ns nly. ets Is.		ØR	s
MODEL	6 ¹⁵ / ₃₂	6 ³ / ₁₆	Q ~ C 3 ³ / ₁₆	D 1 ¹⁹ / ₃₂	E 3 ¹⁵ / ₆₄	+	4 ⁹ / ₁₆	2 ¹ / ₄	Г К 1 ¹ /8	Appearan each moc shown are t Detailed T are availab <u>L</u> 5/16 UNC	ce will lel. Dir for refer echnic ole for a M 1 ¹ / ₂	vary f mensio rence or al shee Il mode	for ns nly. ets ls. ØP	³ / ₁₆ x ³ / ₃₂	⁵ /8	³ / ₁₆ x ³ / ₃₂
MODEL M3 44	6 ¹⁵ / ₃₂ 7 ¹⁵ / ₁₆	6 ³ / ₁₆ 7 ¹ / ₈	Q ~ C 3 ³ / ₁₆ 3 ⁵ / ₈	D 1 ¹⁹ / ₃₂ 1 ¹³ / ₁₆	E 3 ¹⁵ / ₆₄ 3 ³¹ / ₃₂	F 1 ³ / ₄ 2 ⁵ / ₁₆	4 ⁹ / ₁₆ 5 ³ / ₁₆	2 ¹ / ₄ 3 ¹ / ₈	С	Appearan each moc shown are t Detailed T are availab <u>L</u> 5/16 UNC 5/16 UNC	ce will lel. Dir for refer echnic ole for a M 1 ¹ / ₂ 1 ¹ / ₂	vary f mensio rence or al shee Il mode N 1 ¹⁷ / ₃₂ 1 ¹ / ₂	for ns nly. ets ls. ØP	³ / ₁₆ x ³ / ₃₂ ³ / ₁₆ x ³ / ₃₂	⁵ / ₈ ³ / ₄	³ / ₁₆ x ³ / ₃₂ ³ / ₁₆ x ³ / ₃₂
MODEL M3 44 150	6 ¹⁵ / ₃₂ 7 ¹⁵ / ₁₆ 10 ³ / ₁₆	6 ³ / ₁₆ 7 ¹ / ₈ 8 ⁹ / ₃₂	Q ~ C 3 ³ / ₁₆ 3 ⁵ / ₈ 4 ¹ / ₈	D 1 ¹⁹ / ₃₂ 1 ¹³ / ₁₆ 2 ¹ / ₁₆	E 3 ¹⁵ / ₆₄ 3 ³¹ / ₃₂ 5 ³ / ₃₂	F 1 ³ / ₄ 2 ⁵ / ₁₆ 2 ²⁷ / ₃₂	4 ⁹ / ₁₆ 5 ³ / ₁₆ 5 ²³ / ₃₂	2 ¹ / ₄ 3 ¹ / ₈ 4 ¹ / ₄	K 1 ¹ / ₈ 1 ⁹ / ₁₆ 2 ¹ / ₈	Appearan each moc shown are to Detailed T are availab L 5/16 UNC 5/16 UNC 3/8 UNC	ce will lel. Dir for refer echnic ole for a <u>M</u> 1 ¹ / ₂ 1 ¹ / ₂ 2	vary f mensio rence or al shee Il mode N $1^{17}/_{32}$ $1^{1/_2}$ 2	for ns nly. ets ls. ØP ^{5/8} ^{3/4} 1	³ / ₁₆ x ³ / ₃₂ ³ / ₁₆ x ³ / ₃₂ ¹ / ₄ x ¹ / ₈	⁵ / ₈ ³ / ₄ 1	³ / ₁₆ X ³ / ₃₂ ³ / ₁₆ X ³ / ₃₂ ¹ / ₄ X ¹ / ₈
MODEL M3 44	6 ¹⁵ / ₃₂ 7 ¹⁵ / ₁₆	6 ³ / ₁₆ 7 ¹ / ₈	Q ~ C 3 ³ / ₁₆ 3 ⁵ / ₈	D 1 ¹⁹ / ₃₂ 1 ¹³ / ₁₆	E 3 ¹⁵ / ₆₄ 3 ³¹ / ₃₂	F 1 ³ / ₄ 2 ⁵ / ₁₆	4 ⁹ / ₁₆ 5 ³ / ₁₆	2 ¹ / ₄ 3 ¹ / ₈	С	Appearan each moc shown are t Detailed T are availab <u>L</u> 5/16 UNC 5/16 UNC	ce will lel. Dir for refer echnic ole for a M 1 ¹ / ₂ 1 ¹ / ₂	vary f mensio rence or al shee Il mode N 1 ¹⁷ / ₃₂ 1 ¹ / ₂	for ns nly. ets ls. ØP	³ / ₁₆ x ³ / ₃₂ ³ / ₁₆ x ³ / ₃₂	⁵ / ₈ ³ / ₄	³ / ₁₆ x ³ / ₃₂ ³ / ₁₆ x ³ / ₃₂

21 ¹/₂ All Dimensions are in inches.

15¹³/₁₆

16 ³/₃₂

18 ⁹/₃₂

14 ²³/₃₂

15²¹/₃₂

17 ³/₄

19 ³/₄

8 ³/₁₆

8 ³/₁₆

9¹/₂

9¹/₂

88

800

1000

1010

Other HUB CITY Products

6 ¹/₂

6 ¹/₂

8

8

3 ¹/₄

3¹/₄

4

4

1/2 UNC

1/2 UNC

1/2 UNC

1/2 UNC

3

3 ³/₃₂

3

4

3 ¹/₁₆

3 ¹/₁₆

3

4

1 ³/₈

1 ¹/₂

1 ³/₄

2

⁵/₁₆ x ⁵/₃₂

³/₈ x ³/₁₆

³/₈ x ³/₁₆

 $^{1}/_{2} \mathbf{X} ^{1}/_{4}$

1 ³/₈

1 ¹/₂

1 ³/₄

2

⁵/₁₆ x ⁵/₃₂

³/₈ x ³/₁₆

³/₈ x ³/₁₆

 $^{1}/_{2} \mathbf{X} ^{1}/_{4}$

7²⁹/₃₂

8 ³/₆₄

9 ⁹/₆₄

10 ³/₄

4 ¹⁹/₃₂

4 ⁹/₁₆

5 ¹/₄

5 ¹/₄

10 7/8

11 ¹/₂

13

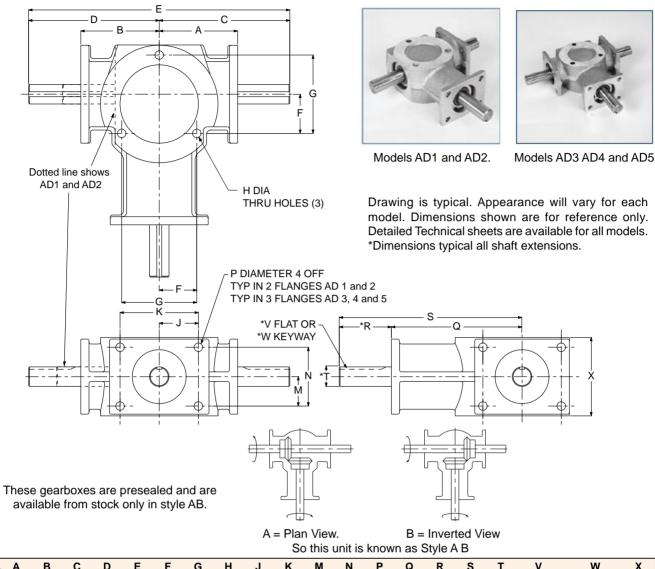
15

4 ³/₃₂

4 ³/₃₂

4 ³/₄

4 ³/₄



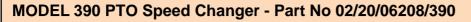
Parallel Shaft Drives

These speed reducers provide you with nearly unlimited degree of flexibility. With up to 3 input modes to provide integration with hydraulic, electric or externally coupled drives. Redution ratio's up to 70:1.

ALUMINIUM CASE, STAINLESS SHAFTS, SPIRAL BEVEL AND BALL BEARINGS

MODEL	Α.	В	С	D	Е	F	G	н	J	κ	Μ	Ν	Ρ	Q	R	S	Т	V	w	Х
AD1	1 ³ /8	³¹ / ₃₂	1 ³¹ / ₃₂	1 ⁹ / ₁₆	3 ¹⁷ / ₃₂	²¹ / ₃₂	1 ⁵ / ₁₆	¹³ / ₆₄	¹⁹ / ₃₂	1 ³ / ₁₆	7/ ₁₆	7/ ₈	¹¹ / ₆₄	2 ⁵ / ₃₂	¹⁹ / ₃₂	2 ³ / ₄	³ /8	¹ / ₃₂ Deep	0.47 Eff flat	1 ¹ / ₄
AD2	2 ¹ / ₈	1 ⁹ / ₃₂	3 ⁵ /8	2 ²⁵ / ₃₂	6 ¹³ / ₃₂	¹⁵ / ₁₆	1 ⁷ /8	¹⁷ / ₆₄	¹⁵ / ₁₆	1 ⁷ / ₈	¹¹ / ₁₆	1 ³ /8	¹⁷ / ₆₄	3 ¹ / ₄	1 ¹ / ₂	4 ³ / ₄	⁵ /8	- '	³ / ₁₆ x ³ / ₃₂	2
AD3	3	3	5	5	10	1 ¹ / ₂	3	²¹ / ₆₄	1 ¹ / ₂	3	1 ¹ / ₈	2 ¹ / ₄	²¹ / ₆₄	5	2	3	3/4	-	³ / ₁₆ x ³ / ₃₂	3
AD4	1 ³ /8	1 ³ /8	1 ⁶³ / ₆₄	1 ⁶³ / ₆₄	3 ⁶¹ / ₆₄	²¹ / ₃₂	1 ⁵ / ₁₆	¹⁷ / ₆₄	¹⁹ / ₃₂	1 ³ / ₁₆	7/ ₁₆	⁷ /8	¹¹ / ₆₄	2 ⁵ / ₃₂	¹⁹ / ₃₂	2 ³ / ₄	³ /8	¹ / ₃₂ Deep	0.47 Eff flat	1 ¹ / ₄
AD5	2 ¹ / ₈	2 ¹ / ₈	3 ⁵ / ₈	3 ⁵ /8	7 ¹ / ₄	¹⁵ / ₁₆	1 ⁷ /8	¹⁷ / ₆₄	¹⁵ / ₁₆	1 ⁷ / ₈	¹¹ / ₁₆	1 ³ /8	¹⁷ / ₆₄	3 ¹ / ₄	1 ¹ / ₂	2	⁵ /8	-	³ / ₁₆ x ³ / ₃₂	2

	SPIRAL BEVEL GEAR DRIVES												
INPUT RPM	RATIO	OUTPUT RPM	AD1 INPUT kW	& AD4 OUTPUT TORQUE		& AD5 OUTPUT TORQUE		D3 OUTPUT TORQUE					
3600	1:1	3600	1.35	3.58	3.21	8.53	7.64	20.29					
	2:1	1800	0.40	2.07	1.58	8.38	2.84	15.12					
2400	1:1	2400	0.92	3.67	2.20	8.74	5.29	21.06					
	2:1	1200	0.27	2.11	1.08	8.60	1.95	15.55					
1750	1:1	1750	0.68	3.72	1.63	8.89	3.93	21.43					
	2:1	875	0.19	2.13	0.80	8.72	1.46	15.93					
1150	1:1	1150	0.45	3.77	1.10	9.07	2.65	22.01					
	2:1	575	0.13	2.18	0.54	8.88	0.98	16.32					
690	1:1	690	0.28	3.83	0.67	9.25	1.63	22.61					
	2:1	345	0.08	2.20	0.33	9.04	0.60	16.74					
100	1:1	100	0.04	4.02	0.10	9.69	0.25	24.05					
	2:1	50	0.01	2.32	0.05	9.40	0.10	17.70					


	70	110 1 132								
	Allowable Shaft Loads All Ratios and Shafts									
Model No	Overhung Thrust Model No Load** Load									
AD3	45 kgs	90 kgs								
AD1 & AD4	11 kgs	22 kgs								
AD2 & AD5		45 kgs								

** Assumes load at midpoint of shaft extension

Model No	Ratio	Dry Wt Kg	Ordering Code
AD1	1:1	0.3	02/20/00201/003
	2:1	0.3	02/20/00203/003
AD2	1:1	0.9	02/20/00301/004
	2:1	0.9	02/20/00304/004
AD3	1:1	3.8	02/20/00403/005
	2:1	3.8	02/20/00404/005
AD4	1:1	0.3	02/20/05301/006
	2:1	0.3	02/20/05304/006
AD5	1:1	0.9	02/20/05401/007
	2:1	0.9	02/20/05404/007

GP113

ADAPTS UP TO 125 HP TRACTOR TO ALL PTO OPERATED FIELD EQUIPMENT

FFATURES

Unit takes input horsepower up to 125 @ 1000 RPM.

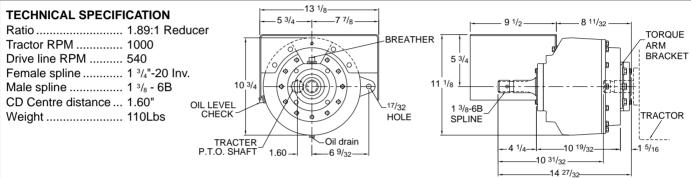
Alloy Steel, heat treated gears don't shy away from jolts and shock loads.

Rugged, cast iron housing protects the unit for long, trouble free service.

Tapered roller bearing give quiet performance and long life.

Double lip, spring loaded seals keep lubricant where it belongs.

Alloy shaft and spline sleeve add to strength and dependability.


Unit minimizes PTO shaft overhung load and drive line angularity.

Easily installed and removed.

Safety shield included.

Permanently lubricated at factory.

Minimum offset between tractor PTO and speed changer extension minimizes drive line adjustment.

IMPORTANT: The Model 390 Speed Changers can be mounted on most tractor PTO shafts, however, they cannot be mounted on tractors that do not have detachable PTO shields. Units must be used in an approved mounting position with the torque arm bracket also in an approved position otherwise excessive side loading will be exerted on the tractor PTO shaft. The torque arm must always be positioned at 90° to the torque arm bracket.

в

MODEL DZ1, DZ2 & DZ3

DZ1

₼

 ϕ

Ratio - 1:1

н В

Housing - Aluminium

¢

÷

ØS

0

40

66

96

MODEL A

DZ1

DZ2

DZ3

4 Holes ØS

С

68

104

150

D

60

90

140

В

32

50

74

Part No. DZ11-3FABC

DZ2

Ratio - 1:1 Housing - Alumir Part No. DZ21-

C

ഗ

Holes 3 places ØU in B depth boss

Е

15

35

50

F

16

24

38

Н

33

52

76

I

11

18

27

G

16

24

38

Е

С

	DZ3	
	Ratio - 1	:1
nium	Housing	- Aluminium
3FABC	Part No.	DZ31-3FABC
1	С	, E ,
	F F	

6

Ν

M

Κ

2.5

5

3.5 5 55 52

L

J

15

26

38

Ð

Ø

Μ Ν

22 .

35

74

8

40

8.3

8.3

		+								
•		DZ	21	DZ	2	D	Z 3			
		Ratio	<u>) 1:1</u>	Ratic) 1:1	Rati	o 1:1			
		Output								
	RPM			torque						
		Nm	kW	Nm	kW	Nm	kW			
-	50	4.7	0.026	16.5	0.093	50.5	0.28			
	100	4.2	0.047	14.5	0.162	44.0	0.49			
	200	3.7	0.082	12.6	0.280	38.0	0.85			
	300	3.4	0.113	11.6	0.386	34.7	1.15			
	400	3.2	0.142	10.6	0.470	32.5	1.44			
	600	2.9	0.195	10.0	0.665	29.7	1.98			
	800	2.7	0.242	9.6	0.847	28.4	2.5			
	1000	2.6	0.287	9.2	1.014	27.1	3.0			
	1200	2.5	0.331	8.9	1.177	26.2	3.47			
	1400	2.4	0.368	8.6	1.320	25.2	3.87			
	1600	2.3	0.407	8.3	1.455	24.3	4.26			
	1800	2.3	0.442	8.0	1.571	23.5	4.61			
	2000	2.2	0.476	7.9	1.723	22.8	4.98			
	2500	2.1	0.556	7.8	2.105	21.3	5.75			
	3000	2.0	0.632	7.7	2.494	20.2	6.54			
	Rating	are bas	sed on	12 hou	rs/day	operati	on with			
	-			other se	-	•				
		es offic	0							
0	Р	Q	S	ØU S	Shaft	Key \	Veight			
32	5	-	4.2	5.2	Ø8	-	0.3			
50	7	27	6.2	8.3 🤇	ð 15	5	1.1			

Ø 20

6

Ð

3.4

AFTERMARKET SERVICES FOR THE REPLACEMENT PARTS INDUSTRY

MANUFACTURERS OF REPLACEMENT COMPONENT PARTS FOR AUTOMOTIVE, TRACTOR, OFF-ROAD, MINING EQUIPMENT ETC.

The after market service division provides batch manufacture of components for the replacement parts industry. Items include transmission components for tractors, four wheel drives, classic automobiles and motor cycles, harvesters and road machines. We also supply special couplings and replacement pump or motor shafts for the fluid power industry. Replacement parts can be made from samples or drawings. The facility at Ballina includes modern 4 axis CNC machining capacity, production milling, gear hobbing, spline hobbing, gear shaping, spline shaping, broaching of splines and keyways, key seating, heat treatment and CNC drilling.

MORI SEIKI SL25SY 1000 CNC turning and milling centre

COMPLEX MACHINING OPERATIONS AT LOW COST

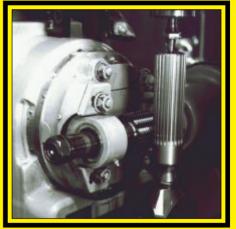
DYNAGEAR

Our machining capacity includes the Mori Seiki SL25SY turning centre shown at left. This machine is equipped with a sub-spindle for second operation chucking. In addition to a C, Z, and X axis the machine is one of the first of its type in Australia equipped with a Y axis for drilling tapping or milling across a work piece. As many as 12 drilling milling or tapping stations can be fitted to the machine. This machine is also equipped with an automatic bar feed with a capacity of 65mm material. Turning to one metre length can also be accommodated.

The capacity and versatility of our machines enables work pieces of considerable complexity to be produced complete in one or two operations where previously 8 to 10 operations would be required. Such versatility permits considerable reduction in cost while maintaining a high degree of guality and accuracy.

PRODUCTION OF SPLINED COMPONENTS IS OUR SPECIALITY

We are specialists in the production of splined components. External splines are produced either on our hobbing machines or gear shapers. We have the largest individual range of external splined hobs and external spline shaper cutters in the southern hemisphere.


Internal splines are produced either by broaching or by gear shaping. We have a very extensive range of broaches and internal shaper cutters for imperial and metric involute splines as well as a large range of tools for the production of straight sided splines.

PRODUCTION OF GEARS

We manufacture external and internal spur and helical gear components for a wide range of applications and have available a large range of hobs for gears and sprockets. External and internal gear shaper cutters are also available for the generation of gears by the gear shaping method. Gear tooth rounding is also carried out at our facility.

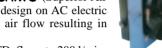
EXTERNAL AND INTERNAL KEYWAYS

Our facilities include capacity for high volume production of external keyways by several methods including the ability to provide very accurate width and depth tolerances in any size to 1" width. We also have extensive production keyway broaching capacity up to 16mm key width.

Spline cutting on splined shafting using our vertical hobbing machine

QUALITY ASSURANCE . OEM DYNAMICS Manufacturing Division has Quality Assurance accreditation to the requirements of AS3902/IS09002 certificate no. MEQ 0942414. The assessor is Lloyds Register.

SOME CUSTOMER COMPONENTS MANUFACTURED BY OEM DYNAMICS



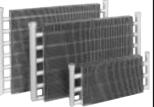
Heat Transfer Products

Air Cooled Versacool

DC Electric Drive - Available in 5 Basic models with 19 different electric motor variants in 12 or 24 Volt. New long life water resistant fan motors in regular or high performance types. Three types of cooling elements with operating pressure to 14 Bar. Rated to 0.5 kW/°C ETD, flows to 150 l/min. SAMS AC Electric Drive - Available in 7 basic models with 26 different motor variants in 50 or 60 Hz options. Voltages from 240 through to 450. New SAMS (Superior Air Management System) design on AC electric models delivers more air flow resulting in greater performance.

Rated to 0.8 kW/°C ETD, flows to 200 l/min.

Air Cooled S & ST Special Application


Currently available in three models. ST series feature heavy duty cooling elements with steel fins, rectangular steel tanks and copper tubes for high pressure low air side clogging applications or for the special requirements of underground coal mines. Available with standard or antistatic fans and flame proof electric motors for intrinsically safe applications.

Rated to 2 kW/°C ETD, flows to 540 L/min.

Mobile Equipment **Oil Coolers**

These unit are for use on mobile equipment in rough off road applications and in high pressure situations.

Light duty - with aluminium or steel fins and copper tanks.

Heavy duty - with steel fins & square section steel tanks. Optional full flow relief valves for improved safety.

DYNACOOL CD

The latest version of our Dynacool heat exchanger selection program now provides quick and accurate selection of most of our standard models of air cooled package exchangers, mobile air cooled and water cooled models. A new easy find instruction manual is now also available.

Distributed By-

Shell & Tube Heat Exchangers

Large range of standard and extended surface models for cooling fluids with water. EKM - Rated to 200 kW. Oil flows to 200 l/min ECM - Rated to 400 kW. Oil flows to 700 l/min. B - Rated to 370 kW. Oil flows to 960 l/min.

Water Cooled DOCTM Series **Brazed Plate Heat Exchangers**

- Purposely designed for oil cooling using water
- Extremely high cooling efficiency, low water usage
- · Very compact design with female BSPP ports
- Support bracket included with all ex-stock units
- 3-year material parts guarantee
- All stainless steel brazed construction (incl. bracket)
- · Titanium plate and gasket units are available for
- sea water & other dirty water applications

Heat dissipation to 210kW at oil flow of 400l/min

Air Cooled Series A2000P with **Co-Axial Oil Pump**

Developed for cooling gear drives. The pumps provided are high suction types intended for use with gear or hydraulic oils. A common application in hydraulics is cylinder circuits where it is not usually appropriate to pass the on line circuit through the cooler due to possibility of spikes.

Rated to 1.4 kW/°C ETD Flows to 125 L/min.

Air Cooled Series A 2000 Aluminium High Performance

25 years in the field with over 30 standard model variants. Corrosion resistant high performance Albraze cooling element. Heavy duty zinc seal powder coated casings for excellent appearance and durability. Available in most voltages in 50 and 60 cycles as well as 12 and 24 volt DC or with hydraulic motor drive. Also available for air intercooling applications. Core skirts on all models. Core guards on larger models.

Rated to 9.0 kW/°C ETD Flows to 800 L/min.

